2721 words
14 minutes
CS50P
2024-10-24

CS50P#

filei/o#

import csv

students = []

with open("students.csv") as file:
    reader = csv.reader(file)
    for row in reader:
        students.append({"name": row[0], "home": row[1]})

for student in sorted(students, key=lambda student: student["name"]):
    print(f"{student['name']} is from {student['home']}")
import csv

students = []

with open("students.csv") as file:
    reader = csv.DictReader(file)
    for row in reader:
        students.append({"name": row["name"], "home": row["home"]})

for student in sorted(students, key=lambda student: student["name"]):
    print(f"{student['name']} is in {student['home']}")
import csv

name = input("What's your name? ")
home = input("Where's your home? ")

with open("students.csv", "a") as file:
    writer = csv.DictWriter(file, fieldnames=["name", "home"])
    writer.writerow({"name": name, "home": home})

libraries#

random.shuffle 把列表随机排序

  • sys is a module that allows us to take arguments at the command line.

  • argv is a function within the sys module that allows us to learn about what the user typed in at the command line. Notice how you will see sys.argv utilized in the code below. In the terminal window, type code name.py. In the text editor, code as follows: ``` import sys

    print(“hello, my name is”, sys.argv[1]) ```


APIs#

  • APIs or “application program interfaces” allow you to connect to the code of others.

  • requests is a package that allows your program to behave as a web browser would.

  • In your terminal, type pip install requests. Then, type code itunes.py.

  • It turns out that Apple iTunes has its own API that you can access in your programs. In your internet browser, you can visit https://itunes.apple.com/search?entity=song&limit=1&term=weezer and a text file will be downloaded. David constructed this URL by reading Apple’s API documentation. Notice how this query is looking for a song, with a limit of one result, that relates to the term called weezer. Looking at this text file that is downloaded, you might find the format to be similar to that we’ve programmed previously in Python.

  • The format in the downloaded text file is called JSON, a text-based format that is used to exchange text-based data between applications. Literally, Apple is providing a JSON file that we could interpret in our own Python program.

  • In the terminal window, type code itunes.py. Code as follows:

    import requests
    import sys
    
    if len(sys.argv) != 2:
        sys.exit()
    
    response = requests.get("https://itunes.apple.com/search?entity=song&limit=1&term=" + sys.argv[1])
    print(response.json())
    

    Notice how the returned value of requests.get will be stored in response. David, having read the Apple documentation about this API, knows that what is returned is a JSON file. Running python itunes.py weezer, you will see the JSON file returned by Apple. However, the JSON response is converted by Python into a dictionary. Looking at the output, it can be quite dizzying!

  • It turns out that Python has a built-in JSON library that can help us interpret the data received. Modify your code as follows:

    import json
    import requests
    import sys
    
    if len(sys.argv) != 2:
        sys.exit()
    
    response = requests.get("https://itunes.apple.com/search?entity=song&limit=1&term=" + sys.argv[1])
    print(json.dumps(response.json(), indent=2))
    

    Notice that json.dumps is implemented such that it utilizes indent to make the output more readable. Running python itunes.py weezer, you will see the same JSON file. However, this time, it is much more readable. Notice now that you will see a dictionary called results inside the output. Inside that dictionary called results there are numerous keys present. Look at the trackName value in the output. What track name do you see in your results?

  • How could we simply output the name of just that track name? Modify your code as follows:

    import json
    import requests
    import sys
    
    if len(sys.argv) != 2:
        sys.exit()
    
    response = requests.get("https://itunes.apple.com/search?entity=song&limit=50&term=" + sys.argv[1])
    
    o = response.json()
    for result in o["results"]:
        print(result["trackName"])
    

    Notice how we are taking the result of response.json() and storing it in o (as in the lowercase letter). Then, we are iterating through the results in o and printing each trackName. Also notice how we have increased the limit number of results to 50. Run your program. See the results.

  • You can learn more about requests through the library’s documentation.

  • You can learn more about JSON in Python’s documentation of JSON.


正则表达式#

.   any character except a new line
*   0 or more repetitions
+   1 or more repetitions
?   0 or 1 repetition
{m} m repetitions
{m,n} m-n repetitions
^   matches the start of the string
$   matches the end of the string or just before the newline at the end of the string
[]    set of characters
[^]   complementing the set

\d    decimal digit
\D    not a decimal digit
\s    whitespace characters
\S    not a whitespace character
\w    word character, as well as numbers and the underscore
\W    not a word character

A|B     either A or B
(...)   a group
(?:...) non-capturing version

一些例子: - ^abc: 匹配以 “abc” 开头的行。 - 123$: 匹配以 “123” 结尾的行。 - [0-9]+: 匹配一个或多个数字。 - (\d{3}-)?\d{4}: 匹配可选的三位数区号,后面跟着四位数字。 - \bword\b: 匹配一个完整的单词 “word”。 - (cat|dog): 匹配 “cat” 或 “dog”。 - .*: 匹配任意字符零次或多次(通配符)。 ``` import re

email = input(“What’s your email?”).strip()

if re.search(r“1+@[a-zA-Z0-9_].+.edu$”, email): print(“Valid”) else: print(“Invalid”)


 Notice that `[a-zA-Z0-9_]` tells the validation that characters must be between `a` and `z`, between `A` and `Z`, between `0` and `9` and potentially include an `_` symbol. Testing the input, you’ll find that many potential user mistakes can be indicated.
Thankfully, common patterns have been built into regular expressions by hard-working programmers. In this case, you can modify your code as follows:

import re

email = input(“What’s your email?”).strip()

if re.search(r“^+@.+.edu$”, email): print(“Valid”) else: print(“Invalid”) ```

Notice that \w is the same as [a-zA-Z0-9_]. Thanks, hard-working programmers!

import re

name = input("What's your name? ").strip()
matches = re.search(r"^(.+), (.+)$", name)
if matches:
    last = matches.group(1)
    first = matches.group(2)
    name = f"{first} {last}"
print(f"hello, {name}")
import re

name = input("What's your name? ").strip()
if matches := re.search(r"^(.+), *(.+)$", name):
    name = matches.group(2) + " " + matches.group(1)
print(f"hello, {name}")

Notice how we combine two lines of our code. The walrus := operator assigns a value from right to left and allows us to ask a boolean question at the same time. Turn your head sideways and you’ll see why this is called a walrus operator.

class Student:
    def __init__(self, name, house):
        if not name:
            raise ValueError("Invalid name")
        if house not in ["Gryffindor", "Hufflepuff", "Ravenclaw", "Slytherin"]:
            raise ValueError("Invalid house")
        self.name = name
        self.house = house

    def __str__(self):
        return f"{self.name} from {self.house}"

def main():
    student = get_student()
    student.house = "Number Four, Privet Drive"
    print(student)

def get_student():
    name = input("Name: ")
    house = input("House: ")
    return Student(name, house)

if __name__ == "__main__":
    main()

decorator#

def a_new_decorator(a_func): ```

def wrapTheFunction(): print(“I am doing some boring work before executing a_func()”)

a_func()

print("I am doing some boring work after executing a_func()")

return wrapTheFunction

def a_function_requiring_decoration(): print(“I am the function which needs some decoration to remove my foul smell”)

a_function_requiring_decoration() ((outputs: “I am the function which needs some decoration to remove my foul smell”

a_function_requiring_decoration = a_new_decorator(a_function_requiring_decoration) ((now a_function_requiring_decoration is wrapped by wrapTheFunction()

a_function_requiring_decoration() ((outputs: I am doing some boring work before executing a_func() I am the function which needs some decoration to remove my foul smell I am doing some boring work after executing a_func()

你看明白了吗?我们刚刚应用了之前学习到的原理。这正是 python 中装饰器做的事情!它们封装一个函数,并且用这样或者那样的方式来修改它的行为。现在你也许疑惑,我们在代码里并没有使用 @ 符号?那只是一个简短的方式来生成一个被装饰的函数。这里是我们如何使用 @ 来运行之前的代码:

@a_new_decorator def a_function_requiring_decoration(): “““Hey you! Decorate me!”“” print(“I am the function which needs some decoration to” “remove my foul smell”)

a_function_requiring_decoration() #outputs: I am doing some boring work before executing a_func() # I am the function which needs some decoration to remove my foul smell # I am doing some boring work after executing a_func()

#the @a_new_decorator is just a short way of saying: a_function_requiring_decoration = a_new_decorator(a_function_requiring_decoration)

***

@a_new_decorator a_fuction_requiring_decoration 即为 a_function_requiring_decoration = a_new_decorator(a_function_requiring_decoration)

**装饰器是@后的函数是装饰器,它接受一个函数进行一定操作后再利用这个函数,其后跟的是它接受到的函数**
***

def decorated(*args, **kwargs): auth = request.authorization if not auth or not check_auth(auth.username, auth.password): authenticate() return f(*args, **kwargs)

- `*args`:是一个元组(tuple),用于接收任意数量的位置参数。当你在调用装饰后的函数时,传递的所有位置参数都会被收集到 `args` 中。在调用原始函数时,可以使用 `f(*args)` 来将这些位置参数传递给原始函数。

- `**kwargs`:是一个字典(dictionary),用于接收任意数量的关键字参数。当你在调用装饰后的函数时,传递的所有关键字参数都会被收集到 `kwargs` 中。在调用原始函数时,可以使用 `f(**kwargs)` 来将这些关键字参数传递给原始函数。

## 使用类装饰器

class email_logit(logit): ’’’ 一个logit的实现版本,可以在函数调用时发送email给管理员 ’’’ def init(self, email=‘admin@myproject.com’, *args, **kwargs): self.email = email super(email_logit, self).init(*args, **kwargs)

def notify(self):
    # 发送一封email到self.email
    # 这里就不做实现了
    pass

class MultiDecorator: def init(self, func): self.func = func

def first_decorator(self):
    print("First decorator: Something before the function is called.")
    self.func()
    print("First decorator: Something after the function is called.")

def second_decorator(self):
    print("Second decorator: Something before the function is called.")
    self.func()
    print("Second decorator: Something after the function is called.")

@MultiDecorator def my_function(): print(“Inside my_function”)

my_function.first_decorator() print(“——”) my_function.second_decorator()


***
## [Class Methods](https://cs50.harvard.edu/python/2022/notes/8/#class-methods)

- Sometimes, we want to add functionality to a class itself, not to instances of that class.
- `@classmethod` is a function that we can use to add functionality to a class as a whole.
- Here’s an example of _not_ using a class method. In your terminal window, type `code hat.py` and code as follows:

import random

class Hat:
    def __init__(self):
        self.houses = ["Gryffindor", "Hufflepuff", "Ravenclaw", "Slytherin"]

    def sort(self, name):
        print(name, "is in", random.choice(self.houses))

hat = Hat()
hat.sort("Harry")
```

Notice how when we pass the name of the student to the sorting hat, it will tell us what house is assigned to the student. Notice that `hat = Hat()` instantiates a `hat`. The `sort` functionality is always handled by the _instance_ of the class `Hat`. By executing `hat.sort("Harry")`, we pass the name of the student to the `sort` method of the particular instance of `Hat`, which we’ve called `hat`.
  • We may want, though, to run the sort function without creating a particular instance of the sorting hat (there’s only one, after all!). We can modify our code as follows:

    import random
    
    class Hat:
    
        houses = ["Gryffindor", "Hufflepuff", "Ravenclaw", "Slytherin"]
    
        @classmethod
        def sort(cls, name):
            print(name, "is in", random.choice(cls.houses))
    
    Hat.sort("Harry")
    

    Notice how the __init__ method is removed because we don’t need to instantiate a hat anywhere in our code. self, therefore, is no longer relevant and is removed. We specify this sort as a @classmethod, replacing self with cls. Finally, notice how Hat is capitalized by convention near the end of this code, because this is the name of our class.

  • Returning back to students.py we can modify our code as follows, addressing some missed opportunities related to @classmethods:

    class Student:
        def __init__(self, name, house):
            self.name = name
            self.house = house
    
        def __str__(self):
            return f"{self.name} from {self.house}"
    
        @classmethod
        def get(cls):
            name = input("Name: ")
            house = input("House: ")
            return cls(name, house)
    
    def main():
        student = Student.get()
        print(student)
    
    if __name__ == "__main__":
        main()
    

    Notice that get_student is removed and a @classmethod called get is created. This method can now be called without having to create a student first.


函数内部需要声明global a才能操作a


argparse#

  • Luckily, argparse is a library that handles all the parsing of complicated strings of command-line arguments. In the text editor window, code as follows:

    import argparse
    
    parser = argparse.ArgumentParser()
    parser.add_argument("-n")
    args = parser.parse_args()
    
    for _ in range(int(args.n)):
        print("meow")
    

    Notice how argparse is imported instead of sys. An object called parser is created from an ArgumentParser class. That class’s add_argument method is used to tell argparse what arguments we should expect from the user when they run our program. Finally, running the parser’s parse_args method ensures that all of the arguments have been included properly by the user.

  • We can also program more cleanly, such that our user can get some information about the proper usage of our code when they fail to use the program correctly. In the text editor window, code as follows:

    import argparse
    
    parser = argparse.ArgumentParser(description="Meow like a cat")
    parser.add_argument("-n", help="number of times to meow")
    args = parser.parse_args()
    
    for _ in range(int(args.n)):
        print("meow")
    

    Notice how the user is provided some documentation. Specifically, a help argument is provided. Now, if the user executes python meows.py --help or -h, the user will be presented with some clues about how to use this program.

  • We can further improve this program. In the text editor window, code as follows:

    import argparse
    
    parser = argparse.ArgumentParser(description="Meow like a cat")
    parser.add_argument("-n", default=1, help="number of times to meow", type=int)
    args = parser.parse_args()
    
    for _ in range(args.n):
        print("meow")
    

    Notice how not only is help documentation included, but you can provide a default value when no arguments are provided by the user.

  • You can learn more in Python’s documentation of argparse.


unpacking#

To enable the possibility of passing the entire list, we can use unpacking. In the text editor window, code as follows:


def total(galleons, sickles, knuts): return (galleons * 17 + sickles)
* 29 + knuts

coins = [100, 50, 25]

print(total(*coins), “Knuts”)

Notice how a * unpacks the sequence of the list of coins and passes in each of its individual elements to total.

  • Since the total function expects three arguments, we cannot pass in a dictionary. We can use unpacking to help with this. In the text editor window, code as follows:

    def total(galleons, sickles, knuts):
        return (galleons * 17 + sickles) * 29 + knuts
    
    coins = {"galleons": 100, "sickles": 50, "knuts": 25}
    
    print(total(**coins), "Knuts")
    

    Notice how ** allows you to unpack a dictionary. When unpacking a dictionary, it provides both the keys and values.


Args and kwargs#

  • args是位置参数,就像我们提供的print(“Hello”, “World”)那样。
  • Kwargs是命名参数,或“关键字参数”,例如我们提供的打印参数,如print (end="")

def yell(words): uppercased = [] for word in words:
uppercased.append(word.upper()) print(*uppercased)

  • The uppercase list is printed utilizing the * to unpack it.

Map#

map allows you to map a function to a sequence of values. In practice, we can code as follows:


def main(): yell(“This”, “is”, “CS50”)

def yell(*words): uppercased = map(str.upper, words)
print(*uppercased)

if **name** == “**main**”: main()

Notice how map takes two arguments. First, it takes a function we want applied to every element of a list. Second, it takes that list itself, to which we’ll apply the aforementioned function. Hence, all words in words will be handed to the str.upper function and returned to uppercased.


list comprehension#


uppercased = [arg.upper() for arg in words]


gryffindors = [ student[“name”] for student in students if
student[“house”] == “Gryffindor”]

dictionary comprehension#


students = [“Hermione”, “Harry”, “Ron”]

gryffindors = [{“name”: student, “house”: “Gryffindor”} for student
in students] print(gryffindors)

  • We can even simplify further as follows:

students = [“Hermione”, “Harry”, “Ron”]

gryffindors = {student: “Gryffindor” for student in students}

print(gryffindors)


filter#

  • Using Python’s filter function allows us to return a subset of a sequence for which a certain condition is true.

  • In the text editor window, code as follows:

    students = [
        {"name": "Hermione", "house": "Gryffindor"},
        {"name": "Harry", "house": "Gryffindor"},
        {"name": "Ron", "house": "Gryffindor"},
        {"name": "Draco", "house": "Slytherin"},
    ]
    
    def is_gryffindor(s):
        return s["house"] == "Gryffindor"
    
    gryffindors = filter(is_gryffindor, students)
    
    for gryffindor in sorted(gryffindors, key=lambda s: s["name"]):
        print(gryffindor["name"])
    

    Notice how a function called is_gryffindor is created. This is our filtering function that will take a student s, and return True or False depending on whether the student’s house is Gryffindor. You can see the new filter function takes two arguments. First, it takes the function that will be applied to each element in a sequence—in this case, is_gryffindor. Second, it takes the sequence to which it will apply the filtering function—in this case, students. In gryffindors, we should see only those students who are in Gryffindor.

  • filter生成一个类似词典的东西让你查找是否符合条件

  • filter can also use lambda functions as follows:

    students = [
        {"name": "Hermione", "house": "Gryffindor"},
        {"name": "Harry", "house": "Gryffindor"},
        {"name": "Ron", "house": "Gryffindor"},
        {"name": "Draco", "house": "Slytherin"},
    ]
    
    gryffindors = filter(lambda s: s["house"] == "Gryffindor", students)
    
    for gryffindor in sorted(gryffindors, key=lambda s: s["name"]):
        print(gryffindor["name"])
    

enumeration#

Utilizing enumeration, we can do


students = [“Hermione”, “Harry”, “Ron”]

for i, student in enumerate(students): print(i + 1, student) ```

---

1. a-zA-Z0-9_[↩︎](about:blank#fnref1)
CS50P
https://tubehao.github.io/blog/posts/learn/cs50p/
Author
tubehao
Published at
2024-10-24